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Introduction

It is estimated that 463 million adults worldwide are living 
with diabetes and this is expected to increase to 700 million 
by 2045.1 No cure for diabetes currently exists. Diabetes 
management is centered on blood glucose level (BGL) nor-
malization to reduce the risk of associated long-term compli-
cations such as retinopathy, end-stage kidney disease, diabetic 
foot disease, and atherosclerotic cardiovascular disease.2,3

Blood glucose level monitoring is an essential part of 
BGL normalization. Self-monitoring blood glucose (SMBG) 
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Abstract
Background: Frequent blood glucose level (BGL) monitoring is essential for effective diabetes management. Poor compliance 
is common due to the painful finger pricking or subcutaneous lancet implantation required from existing technologies. There are 
currently no commercially available non-invasive devices that can effectively measure BGL. In this real-world study, a prototype 
non-invasive continuous glucose monitoring system (NI-CGM) developed as a wearable ring was used to collect bioimpedance 
data. The aim was to develop a mathematical model that could use these bioimpedance data to estimate BGL in real time.

Methods: The prototype NI-CGM was worn by 14 adult participants with type 2 diabetes for 14 days in an observational 
clinical study. Bioimpedance data were collected alongside paired BGL measurements taken with a Food and Drug 
Administration (FDA)-approved self-monitoring blood glucose (SMBG) meter and an FDA-approved CGM. The SMBG 
meter data were used to improve CGM accuracy, and CGM data to develop the mathematical model.

Results: A gradient boosted model was developed using a randomized 80-20 training-test split of data. The estimated 
BGL from the model had a Mean Absolute Relative Difference (MARD) of 17.9%, with the Parkes error grid (PEG) analysis 
showing 99% of values in clinically acceptable zones A and B.

Conclusions: This study demonstrated the reliability of the prototype NI-CGM at collecting bioimpedance data in a real-
world scenario. These data were used to train a model that could successfully estimate BGL with a promising MARD and 
clinically relevant PEG result. These results will enable continued development of the prototype NI-CGM as a wearable ring.
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meters and continuous glucose monitoring systems (CGMs) 
are the two methods currently used for BGL monitoring.4 
While SMBG meters are traditional tools, CGMs provide 
additional information to guide management decisions, 
enabling better glycemic control and reduced hypoglycemic 
event prevalence.5 Both technologies are invasive, either 
requiring a finger prick to obtain a blood sample or subcuta-
neous implantation of a lancet.4 This can cause discomfort 
and pain,6 an increased risk of infection or tissue damage,7 
and a reduced adherence to BGL monitoring. Suboptimal 
BGL monitoring is common, precludes effective BGL nor-
malization, and increases the risk of long-term complica-
tions.8 A non-invasive CGM (NI-CGM) could address these 
limitations and improve health outcomes and quality of life 
for people living with diabetes.9 Although no NI-CGMs are 
currently commercially available, several promising tech-
nologies are under development.10

Bioimpedance is one of the primary technologies being 
considered for use as an NI-CGM.11-14 It is routinely used for 
human body composition analysis as it is safe, easy to use, 
portable, reliable, rapid, and low cost.15-17 A correlation 
between bioimpedance and BGL has been demonstrated under 
controlled conditions.18-20 Previous attempts to develop an 
NI-CGM using this technology have, however, resulted in less 
accurate BGL estimations than existing invasive CGMs.21-23 
Pendra (Pendragon Medical Ltd, Zurich, Switzerland) was the 
first bioimpedance-based NI-CGM developed and taken to 
market.24 This device was ultimately discontinued due to 
insufficient accuracy in a post-market validation study and 
limitations with calibration and use while sweating or mov-
ing.14 Addressing these identified challenges with bioimped-
ance could enable production of an accurate NI-CGM.

Bioimpedance is the opposition to the flow of an applied 
alternating current through the tissue of a living organism.25 
It is comprised of resistance and reactance. Resistance is the 
dissipation of energy as current flows through intracellular 
and extracellular ionic solutions and reactance is the capaci-
tance (energy storage) from soft tissue, cell membranes, and 
organelles.26,27 Bioimpedance is frequency-dependent as the 
penetration of applied current through cells varies with fre-
quency. It will preferentially pass through extracellular fluid 
at low frequency (<5 kHz) and can penetrate all fluid com-
partments at high frequency (>100 kHz).28,29 Measuring bio-
impedance over a range of frequencies (bioimpedance 
spectroscopy) allows for information to be generated from 
the multiple different biological tissues through which the 
current passes, rather than only one pathway if a single fre-
quency is used.6,29

Although the biological relationship between bioimped-
ance and BGL is not yet fully understood, there is one sug-
gested hypothesis.10 The red blood cell membrane contributes 
to the reactance of a bioimpedance measurement, whereas 
the intracellular and extracellular fluids contribute to the 
resistance.30,31 Increases in plasma glucose concentration 
increase osmolarity and drive movement of intracellular 
water into the extracellular space. The resultant dilution of 

sodium ions causes redistribution of intracellular potassium 
ions into the extracellular space.32-34 These changes in ion 
concentration alter the permittivity and conductivity of the 
red blood cell membrane which is suggested to be measur-
able using bioimpedance.10 Other biological processes may 
confound this suggested mechanism. The rationale for use of 
bioimpedance to estimate BGL is based on this hypothesis 
and the identified experimental correlation between the two 
under controlled conditions.18-20

The current study used a prototype NI-CGM in the form 
of a wearable ring that used bioimpedance technology. The 
prototype NI-CGM was used in an observational clinical 
study to collect bioimpedance data from a cohort of people 
with diabetes with the aim of developing a mathematical 
model to estimate BGL.

Methods

Study Device

A prototype NI-CGM developed by Opuz Pty Ltd (Sydney, 
Australia) was used in this study (Figure 1a). A bioimped-
ance sensor with a tetrapolar electrode system was used to 
take bioimpedance measurements across the third proximal 
phalanx (base of the third finger; Figure 1b). Each prototype 
NI-CGM was custom fit to a participant to maximize contact 
and minimize movement between skin and the electrodes, 
while also maintaining user comfort. The electrode system 
was optimized to maximize the signal quality, sensitivity, 
and repeatability of bioimpedance measurements,35 which 
were experimentally validated. Bioimpedance measurements 
were described by magnitude and phase and were taken at 20 
frequencies (10 Hz-200 kHz). The prototype NI-CGM was 
IEC 60601 compliant, biocompatible, and battery powered.

During bioimpedance measurements, the prototype 
NI-CGM also measured skin temperature with a custom-
built temperature sensor and movement and orientation with 
a custom-built accelerometer, due to their potential impacts 
on the bioimpedance data.

Measurement data (bioimpedance, temperature, and 
accelerometer) were stored internally and communicated 
periodically via Bluetooth Low Energy to an iOS app that 
was built for the clinical study. The iOS app was designed for 
ease of use and to enable maximum participant compliance. 
It enabled user-driven measurements and recording of 
matched BGL data taken with the other study devices. All 
measurement and BGL data were uploaded from the iOS app 
to the cloud. This allowed real-time monitoring of study par-
ticipants using custom-built software to boost compliance 
and enable rapid troubleshooting which were both critical to 
increasing the size and quality of the resultant study dataset.

Study Population

The study was approved by the Bellberry Ltd Human 
Research Ethics Committee (Adelaide, Australia; July 21, 
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2020; reference number 2020-02-09) and was listed on the 
ClinicalTrials.gov clinical trial registry (identifier: 
NCT04946188). A cohort of 14 participants (12 men and 2 
women; median age 60; age range 22-70) with physician-
diagnosed type 2 diabetes were recruited for the study 
(Supplementary Table S1). These participants satisfied the 
study inclusion and exclusion criteria and provided written 
and oral informed consent.

Study Design

The study was conducted over a 14-day period. Participants 
wore the prototype NI-CGM continually, except while charg-
ing, bathing, or during strenuous exercise or water-based 
activities. Participants were not required to fast nor make any 
adjustments to their daily habits, diet, medication, or routine 
care. The BGL data were collected during the study using 
both an SMBG meter (Accu-Chek Mobile; Roche, Basel, 
Switzerland) and a CGM (FreeStyle Libre; Abbott, Abbott 
Park, Illinois, USA).

Two types of measurements were taken during the 
study: user-driven measurements and automatic measure-
ments. User-driven measurements were simultaneously 
taken with the prototype NI-CGM, SMBG meter, and 
CGM at least seven times per day. This included before 
and after eating, which are recommended times for SMBG 
monitoring and coincide with BGL fluctuations.36 User-
driven measurements were taken using the study iOS app, 
which monitored movement to ensure participants were 
sitting still and resting their arm for the measurement dura-
tion (Figure 2). Automatic measurements were also taken 
with the prototype NI-CGM and CGM every 10 and 15 
minutes, respectively.

Participants attended two onsite sessions during the study 
during which user-driven measurements were taken every 20 
minutes over 4 hours. These were completed at the midway 
point and on the last day of the study. The SMBG meter data 
from these sessions were used to calculate the bias and lag of 
CGM measurements. This information was used to improve 
CGM accuracy, generating an adjusted-CGM dataset. The 
adjusted-CGM dataset was subsequently used to develop the 
BGL mathematical model.

Figure 1.  (a) The prototype NI-CGM used in this study as worn by a study participant. (b) A closeup of the prototype NI-CGM used in 
this study, which shows the electrode system and temperature sensor which interface with a finger. Abbreviation: NI-CGM, non-invasive 
continuous glucose monitoring system.

Figure 2.  The position that participants had to maintain for the 
duration of user-driven measurements taken during the study 
with the iOS app.
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Results and Discussion

Data Collection

Data were collected with the prototype NI-CGM, SMBG 
meter, and CGM over the 14-day study period. The median 
(interquartile range; Q1-Q3) of BGL data collected across all 
study participants was 142 mg/dL (73-180 mg/dL) with the 
SMBG meter and 128 mg/dL (101-160 mg/dL) with the CGM 
(Supplementary Table S2). The BGL data were skewed toward 
normal BGL values (72-140 mg/dL) with a tail in the hyper-
glycemic range (>140 mg/dL). Negligible data were collected 
in the hypoglycemic range (<72 mg/dL); however, this was 
expected due to the study inclusion criteria (Figure 3). For 
eight participants, the CGM became detached and was subse-
quently replaced mid-study.

Bioimpedance data collected with the prototype NI-CGM 
underwent quality control to remove likely anomalous data 
which were generated in circumstances such as incorrect 
device fitment. Data collected when the NI-CGM was not 
worn by a participant (indicated by an impedance magnitude 
greater than 107 Ohms), where the phase angle changed sub-
stantially from negative to positive mid-measurement, and 
outliers identified as above the 95% percentile at each fre-
quency were removed. A total of 13 318 automatic measure-
ments and 1489 user-driven measurements were taken across 
the 14 participants. After quality control, there were 6485 
and 893 measurements remaining, respectively. See supple-
mentary material for an example of the bioimpedance dataset 
following quality control (Supplementary Figure S1).

Bias and Lag Correction

The learning and performance of any mathematical model is 
enhanced by having a sufficiently large and varied dataset 
and an accurate measure of the defined target (BGL). The 
SMBG meter dataset represents the criterion standard; how-
ever, its use as the model target was limited by sparsity. The 
CGM produced a large BGL dataset due to the frequent auto-
matic measurements; however, the SMBG meter dataset is 
more accurate. The inaccuracy of the CGM is estimated 
using bias and lag. Bias is a systematic shift in measured 
BGL which exists due to variability in the CGM calibration 
process and user characteristics. The CGM measures glucose 
via interstitial fluid rather than directly from blood, and 
hence, there is often a user-specific lag in transfer of glucose 
from blood to the interstitial fluid.37,38 Corrections for CGM 
bias and lag were thus made, using SMBG meter data to 
improve the accuracy of the large CGM dataset 
(Supplementary Table S3). Linear smoothing achieved this 
using the Python (version 3.7) SciPy (version 1.7.1) library. 
A global search of various bias (–90 to 90 mg/dL in 0.9 mg/
dL increments) and lag (0-40 minutes in 0.1 minute incre-
ments) combinations were performed to minimize the root 
mean square error between the linear interpolated CGM data 
and the SMBG data collected during the onsite sessions. This 
was a two-dimensional optimization, calculating both bias 
and lag concurrently. This transformation produced the 
adjusted-CGM dataset which was used for further data 
analysis.

Backward filling was used to transform CGM data from 
each onsite visit for 12 participants. Data from the first ses-
sion was used for transformations back to the start of the 
study and from the second session for transformations back 
to the first session (Figure 4a). Two participants did not com-
plete a second onsite visit due to issues with their prototype 
NI-CGM. Both backward and forward filling was used to 
transform CGM data from the only onsite visit for these par-
ticipants back to start and forward to the end of the study, 
respectively (Figure 4b). A total of 570 SMBG meter and 584 
CGM measurements were used in these bias and lag transfor-
mations. Bioimpedance data collected during the onsite ses-
sions were subsequently used for model development but not 
evaluating model performance.

The success of bias and lag transformations was evaluated 
by comparing the Mean Absolute Relative Difference 
(MARD) before and after transformation. The MARD is 
commonly used to assess CGM accuracy against reference 
values.39 The comparison between CGM estimations and ref-
erence values can be visualized on a Parkes error grid (PEG). 
As the data are from a clinical perspective, no assumptions 
on the normality or skewedness were made. The raw CGM 
dataset had a MARD of 16.5% compared with the SMBG 
meter dataset, with 65% of estimations in zone A and 35% in 
zone B on a PEG plot (Figure 5a). The MARD decreased to 
10.9% after adjusting the CGM dataset, with 88% of 

Figure 3.  Percentage frequency histogram of all BGL 
measurements obtained from the SMBG meter and CGM in this 
study, grouped into ten bins. The SMBG meter and CGM data 
were normalized to account for differences in sample size. Both 
devices were positively skewed in their data, with tails in the 
hyperglycemia range. For both devices, the modal class is around 
125 mg/dL, suggesting participants have well controlled type 2 
diabetes. Abbreviations: BGL, blood glucose level; SMBG, self-
monitoring blood glucose; CGM, continuous glucose monitoring 
system.
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estimations in zone A and 12% in zone B on a PEG plot 
(Figure 5b). The results from this correction demonstrated 
that the adjusted-CGM dataset is a closer proxy for SMBG 
meter data than the raw CGM dataset. Hence, this adjusted-
CGM dataset was used for training and validating a model 
with the bioimpedance data acquired with the NI-CGM.

Model Development

A gradient boosted model was developed using the Python 
(version 3.7) scikit-learn (version 0.24.2) library. 
Bioimpedance data (magnitude and phase angle) recorded 

with the prototype NI-CGM across all 20 frequencies were 
used as the input and the adjusted-CGM dataset as the target 
variable. A randomized 80-20 training-test split was used. 
The model parameters were tuned using fivefold cross-vali-
dation on the training set. Following a randomized grid 
search, the final set of parameters selected were those that 
minimized the cross-validation root mean square error when 
evaluated against SMBG meter data. The final model com-
prised 70 estimators with a maximum depth of eight and a 
learning rate of 0.1. The model was chosen for this study 
because it could identify and emphasize subtle relationships 
in data and could capture non-linearities. These features of 

Figure 4.  Representation of how bias and lag data were applied to the CGM dataset to create the adjusted-CGM data. (a) Participant 
attended onsite sessions half-way through and at the end of the study. Outcomes from both sessions were applied to the entire dataset 
for the days prior (backward fill). (b) Participant attended only the onsite session half-way through the study. Bias and lag were backward 
filled on CGM data obtained before the onsite session and forward filled after the onsite session. Abbreviation: CGM, continuous 
glucose monitoring system.

Figure 5.  Parkes error grid plots for (a) SMBG meter data against the raw CGM data and (b) SMBG meter data against the adjusted-
CGM data. Adjustments were made for bias and lag across each participant to the raw CGM data which produced the adjusted-CGM 
data. This resulted in improvement from a MARD of 16.5% and 65% of estimations in zone A and 35% in zone B to a MARD of 10.9% 
and 88% of estimations in zone A and 12% in zone B, respectively. Datapoints in zones A, B, and C are colored white, gray, and black, 
respectively. Abbreviations: SMBG, self-monitoring blood glucose; CGM, continuous glucose monitoring system; MARD, Mean Absolute 
Relative Difference.
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the model are important due to the incomplete understanding 
of the biological relationship between bioimpedance and 
BGL and the strength of that relationship.

Model Performance

The model performance was evaluated on the test set, a ran-
domized 20% of the total adjusted-CGM dataset. The esti-
mated BGL from the model had a MARD of 17.9%, with 
67% of estimations in zone A, 32% in zone B, and 1% in 
zone C on a PEG plot (Figure 6a). An equivalent PEG plot 
for the test set is shown in the supplementary material 
(Supplementary Figure S2). Performance of the model was 
also evaluated against SMBG meter data, as it was estab-
lished in this study that adjusted-CGM data are a close proxy 
for the SMBG meter dataset (Figure 5b). The model was 
tested against 20% of SMBG meter data, time matched to the 
adjusted-CGM data used to test the model. The estimated 
BGL from the model had a MARD of 21.9%, with 56% of 
estimations in zone A, 42% in zone B, and 2% in zone C on 
a PEG plot (Figure 6b). The increase in MARD of 4% when 
compared against the adjusted-CGM dataset may reflect the 
remaining discrepancy between the adjusted-CGM and 
SMBG meter data. This discrepancy remains because the 
model was only trained on adjusted-CGM data and not 
SMBG meter data (due to the smaller SMBG meter 
dataset).

The required accuracy of SMBG meters for clinical use is 
defined by the International Organization for Standardization 
(ISO15197:2013). There is a requirement for 99% of data to 
fall within zones A and B on a PEG plot which was met by 
the model when tested against the adjusted-CGM data, and 
was missed by 1% when tested against the SMBG meters 
(Table 1). Mean Absolute Relative Difference is the most 
common metric used for CGM evaluation. A MARD of 10% 
has been suggested as the recommended accuracy of CGMs 
for safe use when making insulin-dosing decisions.40 Mean 
Absolute Relative Differences of 11.5%, 13.2%, and 16.6% 
have been determined in studies using the same CGM used 
in this study.41-43 Other commercially available CGMs have 
reported MARDs in the range 10.8% to 21.4%.41 The MARD 
of 17.9% generated with the prototype NI-CGM when test-
ing against adjusted-CGM data is in the same range seen 
with other devices, although they were compared against 
more accurate reference BGLs.

Although the prototype NI-CGM was designed to mini-
mize inherent variability in recorded bioimpedance, factors 
other than changes in BGL may influence this dataset. 
Deconvoluting these other factors could enhance model per-
formance when estimating BGL. Skin temperature and 
movement data were recorded during all prototype NI-CGM 
measurements and enabled the entire dataset to be subsam-
pled. Data with high and low temperatures or high maximum 
and mean movement were sequentially excluded to 

Figure 6.  Parkes error grid plots output from the model for (a) adjusted-CGM test data, where the model had a MARD of 17.9% and 
67% of estimations in zone A, 32% in zone B, and 1% in zone C; and (b) SMBG meter test data, where the model had a MARD of 21.9% 
and 56% of estimations in zone A, 42% in zone B, and 2% in zone C. Datapoints in zones A, B, and C are colored white, gray, and black, 
respectively. Abbreviations: CGM, continuous glucose monitoring system; MARD, Mean Absolute Relative Difference; SMBG, self-
monitoring blood glucose.
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determine if temperature or movement had an observable 
impact on the bioimpedance data. This exclusion based on 
subsampling did not improve model performance (17.9% 
MARD to 18.0% or 18.4%, respectively), and thus it was 
determined that neither temperature nor movement had an 
observable impact. Other factors which are difficult to iden-
tify and control for may still contribute to variability in bio-
impedance measurements, including the hydration level of a 
participant or slightly different locations for NI-CGM place-
ment on the finger. These factors may affect the ease of iden-
tification of the relationship between bioimpedance and 
BGL, resulting in a greater MARD.

Future Work

The promising performance of the model (17.9% MARD; 
99% of estimations in PEG zones A and B) provides justifi-
cation for the continued development of the prototype 
NI-CGM. Optimization of the prototype NI-CGM will con-
tinue as it undergoes miniaturization toward a wearable med-
ical device. Further clinical studies will be conducted 
throughout this process to collect more data and understand 
the relationship between bioimpedance and BGL.

The current pool of 14 study participants was suitable for 
this early-stage validation, whereas additional participants 
with a broader range of characteristics are needed to 
strengthen model performance. Participants with diabetes 
types other than type 2 will be included. While the current 
study was purely observational to understand whether BGL 
could be estimated using the prototype NI-CGM in a real-
world scenario, active BGL manipulation could be used to 
broaden the range of BGLs observed which would strengthen 
the model performance under conditions of hypoglycemia 
and hyperglycemia.

While using a CGM is practical for data collection in a 
real-world scenario in the described observational study, this 
is balanced with reduced accuracy of the CGM compared 
with a SMBG meter. Additional studies will be conducted 
where the BGL data used for model training are collected 
with a more accurate BGL meter such as a YSI 23000 STAT 

Plus glucose analyzer. This would be expected to improve 
model performance due to the higher accuracy of the training 
data but would come with the limitation of a participant 
being tethered to this system and thus would require a large 
number of participants attending many onsite sessions for 
data collection. While the current study had a focus on data 
quantity, this change would represent a change toward data 
quality in the ongoing balance between data quantity and 
data quality. The current study was also conducted over a 
14-day study period, limited by the CGM lifetime, but could 
be extended using such a system.

The model developed in this study was a global model, 
trained and tested on data from all study participants. There 
are, however, noted differences in characteristic bioimped-
ance data per individual. The collection of substantially more 
data from additional participants in future studies would 
enable further exploration of personalized models for BGL 
estimation which may perform better than the described 
global model.

Conclusion

In this study, a prototype NI-CGM was used to collect bio-
impedance data alongside BGL data from an SMBG meter 
and a CGM. The CGM data were transformed using the 
SMBG meter data to improve the accuracy of this large data-
set, creating an adjusted-CGM dataset. A gradient boosted 
model developed using this adjusted-CGM dataset was able 
to successfully estimate BGL with a clinically relevant 
MARD when evaluating the model. This result demonstrated 
that continued development of the prototype NI-CGM is 
warranted, progressing toward a miniaturized wearable 
while conducting further clinical studies aimed at generating 
large volumes of accurate BGL data with a broad spread 
from hypoglycemia to hyperglycemia ranges.

Abbreviations

BGL, blood glucose level; BMI, body mass index; CGM, continu-
ous glucose monitoring system; Food and Drug Administration 
(FDA); MARD, mean average relative difference; NI-CGM, 

Table 1.  Performance of the Model Developed in This Study When Tested Against Adjusted-CGM Data and SMBG Meter Data.

MARD (%)

Model estimations in PEG zones (%)

  Zone A Zone B Zone C

Model tested on adjusted-CGM data 17.9 67 32 1
Model tested on SMBG meter data 21.9 56 42 2
Target value 10a

10.8-21.4b
99c ≤1c

Performance is reported in MARD and by the percentage of estimations within each zone of a PEG plot. Target values from ISO15197:2013 or literature 
are also reported.
Abbreviations: CGM, continuous glucose monitoring system; SMBG, self-monitoring blood glucose; MARD, Mean Absolute Relative Difference; PEG, 
Parkes error grid.
aRecommended accuracy of CGMs for safe use when making insulin-dosing decisions.40

bRange of reported MARDs for commercially available CGMs.41

cRequired accuracy of SMBG meters for clinical use defined by ISO15197:2013.
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non-invasive continuous glucose monitoring system; PEG, Parkes 
error grid; SMBG, self-monitoring blood glucose.
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